Height Difference Bounds For Elliptic Curves over Number Fields
نویسندگان
چکیده
Let E be an elliptic curve over a number field K. Let h be the logarithmic (or Weil) height on E and ĥ be the canonical height on E. Bounds for the difference h − ĥ are of tremendous theoretical and practical importance. It is possible to decompose h − ĥ as a weighted sum of continuous bounded functions Ψυ : E(Kυ) → R over the set of places υ of K. A standard method for bounding h− ĥ, (due to Lang, and previously employed by Silverman) is to bound each function Ψυ and sum these local ‘contributions’. In this paper we give simple formulae for the extreme values of Ψυ for nonarchimedean υ in terms of the Tamagawa index and Kodaira symbol of the curve at υ. For real archimedean υ a method for sharply bounding Ψυ was previously given by Siksek (1990). We complement this by giving two methods for sharply bounding Ψυ for complex archimedean υ.
منابع مشابه
Computing a lower bound for the canonical height on elliptic curves over number fields
Computing a lower bound for the canonical height is a crucial step in determining a Mordell–Weil basis for elliptic curves. This paper presents an algorithm for computing such a lower bound for elliptic curves over number fields without searching for points. The algorithm is illustrated by some examples.
متن کاملComputing a Lower Bound for the Canonical Height on Elliptic Curves over Totally Real Number Fields
Computing a lower bound for the canonical height is a crucial step in determining a Mordell–Weil basis of an elliptic curve. This paper presents a new algorithm for computing such lower bound, which can be applied to any elliptic curves over totally real number fields. The algorithm is illustrated via some examples.
متن کاملElliptic Curves and Analogies Between Number Fields and Function Fields
Well-known analogies between number fields and function fields have led to the transposition of many problems from one domain to the other. In this paper, we discuss traffic of this sort, in both directions, in the theory of elliptic curves. In the first part of the paper, we consider various works on Heegner points and Gross–Zagier formulas in the function field context; these works lead to a ...
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملElliptic curves with a given number of points over finite fields
Given an elliptic curve E and a positive integer N , we consider the problem of counting the number of primes p for which the reduction of E modulo p possesses exactly N points over Fp. On average (over a family of elliptic curves), we show bounds that are significantly better than what is trivially obtained by the Hasse bound. Under some additional hypotheses, including a conjecture concerning...
متن کامل